5.1

Z-Scores and the Normal Distribution

Z-Scores

- You are in your first year of college and you just took your first Calculus exam.
- Your professor tells you that the distribution of scores for the exam were approximately Normal with a mean of 72.4 and a standard deviation of 5.3.
- You earned a score of 84 and you want to know how you did relative to your peers.

First - Z-scores! (84-72.4)/5.3

•A z-score tells us how many standard deviations above or below the mean our data point is.

int is. $Z = \frac{X - X}{S} = \frac{84 - 72.4}{5.3} - 2.19$

- •Mean of 72.4 and a standard deviation of 5.3.
- •You earned a score of 84. Find and interpret your z-score. I scored 2 19 standard deviations above mean.

Z-scores...For COMPARING

- •You also took a Physics test. In that class, the professor told you that the test scores were Normally Distributed with a **mean of 54.6** and a **standard deviation of 7.3**.
- •You earned a 65
- •Which score is better, relative to your peers in each class?

Calculus Physics

Mean: 72.4, s.d.: 5.3 Mean: 54.6, s.d.: 4.1

Score: 84 Score: 65

7= 2.19 7=2.54

Even though you scored higher in Calci you scored higher relative to your peers in physics

Practice

You are _____ inches tall. Steph Curry is 75" tall.

Practice

- You are _____ inches tall. Steph Curry is 75" tall.
- The heights of professional basketball players have a mean of 81 inches and a standard deviation of 3 inches.
- The mean height in this class is <u>65</u>.9
- The standard deviation of heights in this class is 3.87.
- Who is RELATIVELY taller? You or Steph Curry?

Back to our Calc Test...

- •You are in your first year of college and you just took your first Calculus exam.
- •Your professor tells you that the distribution of scores for the exam were **approximately Normal** with a mean of 72.4 and a standard deviation of 5.3.
- You earned a score of 84.

I want to know how many students I was better than!!!!

• Because the data was Normally distributed, we can actually find that out (approximately)!

The Normal distribution

• The **normal distribution** is the most important continuous distribution in statistics!

Bell-shaped curve

Symmetrical about the mean

The total area under the curve is 1 (100%)

50% of the area is to the left of the mean with 50% to the right.

The Normal Distribution

- The **normal distribution** is the most important continuous distribution in statistics!
 - Approximately 68% of the area is within 1 standard deviation of the mean.
 - Approximately 95% of the area is within 2 standard deviations of the mean.
 - Approximately 99% of the area is within 3 standard deviations of the mean.

The Normal Distribution

- The **normal distribution** is the most important continuous distribution in statistics!
 - Approximately 68% of the area is within 1 standard deviation of the mean.
 - Approximately 95% of the area is within 2 standard deviations of the mean.
 - Approximately 99% of the area is within 3 standard deviations of the mean.
- **Calc Test approximately Normal** with a mean of 72.4 and a standard deviation of 5.3.

Let's start with your friend, who earned 77.7 on the exam.

What percent of the class did she outperform?

50+34=84%

The Normal Distribution

- The **normal distribution** is the most important continuous distribution in statistics!
 - Approximately 68% of the area is within 1 standard deviation of the mean.
 - Approximately 95% of the area is within 2 standard deviations of the mean.
 - Approximately 99% of the area is within 3 standard deviations of the mean.
- Calc Test approximately Normal with a mean of 72.4 and a standard deviation of 5.3.

Another friend earned a 61.8. What percent of the class

outperformed him?

97,5%

The Normal Distribution

- The **normal distribution** is the most important continuous distribution in statistics!
 - Approximately 68% of the area is within 1 standard deviation of the mean.
 - Approximately 95% of the area is within 2 standard deviations of the mean.
 - Approximately 99% of the area is within 3 standard deviations of the mean.
- Calc Test approximately Normal with a mean of 72.4 and a standard deviation of 5.3.

What percent of the class earned between their scores (61.8)

and 77.7)?

Some practice with that...

- •Calc Test approximately Normal with a mean of 72.4 and a standard deviation of 5.3.
- •What percent of your classmates scored between 67.1 and 77.7?
- •What percent of your classmates scored more than 83?
- •What percent of your classmates scores less than 67.1?

You want to know- What proportion of students in the class scored lower than me?

- •Normally distributed with a mean of 72.4 and a standard deviation of 5.3.
- •You earned a score of 84.
- •Luckily, our GDC has this covered....

Practice

- •Your friend earned a 73. What percent of students scored higher than her?
- •What percent of students earned scores between you and your friend?

Inverse Norm

• One of your classmates shares that she scored higher than 90% of students on the exam. What was her score?

Inverse Norm

• Another classmate shares that he scored lower than only 15% of students, what grade did he earn?

