NAME:	DATE:	
	Probability Notes	
order is considered (i.e., BBG is d BBB GBB BBG GGG BBG GGG	GBG 3 ability of having two girls and a boy, in that order?	
P(GGBV GBGV 3. A pollster surveys 100 people of and 60 Republicans (25% are femal of the 100 people and getting: a) a Democrat	onsisting of 40 Democrats (half of whom are work les). What is the probability of randomly selecting	Olle
p(b) = 0.4		0.5t - DL O
b) a female P(F)=0.35	0.4	0.5 F - DF 0.1 0.5 M - DM 0.2 0.25 F - RF 0.11
c) a female and a Democrat	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.25 F - RF 0.1!
$P(F \cap D) = 0$	1.2	25m -Rm 0.4
P(Rnm) = e) a Democrat or a male	0.45	
P(DUm) = 0	1.2+0.2+0.45=0.8	3
4. Given that P(A) = .4, P(B) = .5	0, 2 + 0.15 + 0.45 = 0.9 i, and P (BIA) = .8, find the following probabilities	8
a) $P(A \text{ and } B) = P(A) P(B)$	314) = (0.4)(0.8) = 0.32	27-056
	B) - PCAUB) = 0.4+0.5-0	. 52-0.56
P(A)B) = P(A)B)	$\frac{0.32}{0.5} = 0.64$	
*		

(ould use a

0

5. Below is a table of past records giving probability data for a driver having an accident (A) and whether or not is was raining.

	Rain	No Rain	
- Ident	0.025	0.015	0,04
Accident	0.335	0.625	0.96
No Accident	1 340	0.64	1

P(Rain) = 0.36 a) What is P(rain)?

b) What is P(accident)? P(accident) = 0.4

c) What is the probability of an accident given it is raining? $\frac{0.025}{0.36} = 0.0694$

d) What is the probability of an accident if it is not raining? $P(\text{accident} | \text{raining}^c) = \frac{0.015}{0.64} = 0.023$

e) Are rain and having an accident independent? from $P(A) \cdot P(B) = 0.36 \pm 0.4 = 0.144$ $P(A) \cdot P(B) = 0.625$ 0.028 70.144

INDEPENDER

6. A particular trait of excellence (the Pryor trait) is found in only 2 percent of the population. I have developed a low cost test for identifying the existence of the trait in a human. Unfortunately, the test gives a positive result 5 percent of the time for people who do not have the trait. Moreover, the test gives a negative result 0.3 percent of the time for people who in fact have the trait. Use a probability tree to help you answer the following questions.

P(T) = 0.0 | 9 | 4 | 0.00006 = 0.02

a) What is the probability that a person selected at random has the trait?

b) What is the probability that a person chosen at random would test positive for the trait?

P(+)=0.01994 + 0.049 = 0.06894
c) What is the probability that a randomly selected person who tests positive for the trait does not have the trait?

